Ruopian Fang

School of Chemical Engineering
Contact details:
0416 395 168


Ruopian Fang is currently an ARC DECRA fellow and a lecturer at School of Chemical Engineering, UNSW, Sydney. She received her PhD degree in Material Science from Institute of Metal Research, Chinese Academy of Sciences in 2018. Her research activities focus on rational material design for electrochemical energy storage and conversion.


  • June 2021 - now: ARC DECRA Fellow, University of New South Wales, Sydney
  • 10/2018 - May 2021: Postdoctoral Research Associate, University of New South Wales, Sydney, Australia
  • 9/2012-6/2018, Ph.D. candidate in Material Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.
  • 9/2008-6/2012, B.S. in Material Science and Engineering, Wuhan University of Technology, Wuhan, China. Wuhan, China.


Research interests

•             Design and fabrication of carbon-based materials (porous carbons, carbon nanotubes, graphene, carbon fibers); Controllable synthesis of nanostructured hybrid materials; etc

•             High-energy-density lithium-sulfur battery: electrochemistry, materials research, electrode structure, and battery integral design; in-situ characterizations; lithium anode protection; all solid-state batteries; etc

•             Design and development of advanced energy storage devices: 3D integrated batteries; flexible energy storage devices; etc.



  1. R. P. Fang, K. Chen, L. C, Yin, Z. H. Sun, F. Li, and H. M. Cheng. The regulating role of carbon nanotubes and graphene in advanced lithium-ion and lithium-sulfur batteries. Adv. Mater., 2018, DOI: 10.1002/adma.201800863. (inside back cover)
  2. S. Y. Zhao, #R. P. Fang, # (#equally contributed) Z. H. Sun, S. G. Wang, J. P. Veder, M. Saundesr, H. M. Cheng, C. Liu, S. P. Jiang, and F. Li. A 3D multifunctional architecture for lithium-sulfur batteries with high areal capacity. Small Methods, 2018, 1800067. (Front cover)
  3. R. P. Fang, S. Y. Zhao, Z. H. Sun, D. W. Wang, R. Amal, S. G. Wang, H. M. Cheng, and F. Li. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater., 2018, 10, 56-61.
  4. R. P. Fang, G. X. Li, S. Y. Zhao, L. C. Yin, K. Du, P. X. Hou, S. G. Gang, H. M. Cheng, C. Liu, and F. Li. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.
  5. R. P. Fang, S. Y. Zhao, Z. H. Sun, D. W. Wang, H. M. Cheng, and F. Li. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater., 2017, 1606823. (Invited review, hot paper, highly cited paper)
  6. R. P. Fang, S. Y. Zhao, P. X. Hou, M. Cheng, S.G. Gang, H. M. Cheng, C. Liu, and F. Li. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater., 2016, 17, 3374-3382. (hot paper, highly cited paper)
  7. R. P. Fang, S. Y. Zhao, S. F. Pei, X. T. Qian, P. X. Hou, H. M. Cheng, C. Liu, and F. Li. Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano, 2016, 10, 8676-8682. (highly cited paper)
  8. R. P. Fang, S. Y. Zhao, S. F. Pei, Y. X. Cheng, P. X. Hou, M. Liu, H. M. Cheng, C. Liu, and F. Li. An integrated electrode/separator with nitrogen and nickel functionalized carbon hybrids for advanced lithium/polysulfide batteries. Carbon, 2016, 109, 719-726.
  9. R. S. Song, # R. P. Fang,# (#equally contributed) L. Wen, Y. Shi, S. G. Wang and F. Li. A trilayer separator with dual function for high performance lithium-sulfur batteries. J. Power Sources, 2016, 301, 179-186.
  10. R. P. Fang, G. M. Zhou, S. F. Pei, F. Li and H. M. Cheng, Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries, Chem. Commun., 2015, 51, 3667-3670.
  11. S. Chua, R. P. Fang, Z. H. Sun, M. J. Wu, Z. Gu, J.Hart, N. Sharma, F. Li, D.Wang. Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chem. A Eur. J. 2018, 18180-18203
  12. K. Chen, Z. H. Sun, R. P. Fang, Y. Shi, H. M. Cheng, and F. Li. MOFs-Derived Nitrogen-Doped Porous Carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater., 2018, 1707592. (highly cited paper)
  13. K. Chen, Z. H. Sun, R. P. Fang, F. Li, and H. M. Cheng. Development of Graphene-based Materials for Lithium-Sulfur Batteries. Acta Phys-Chim. Sin., 2018, 34, 377-390.
  14. Z. H. Sun, J. Zhang, L. C. Yin, G. J. Hu, R. P. Fang, H. M. Cheng, and F. Li. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627. (hot paper, highly cited paper)
  15. A. X. Bu, Y. Tan, R. P. Fang, F. Li, S. F. Pei, R. W. Cai. A graphene/PVDF/PP multilayer composite separator for long-life and high power lithium-ion batteries. New Carbon Mater. 2017, 42, 205-214.
  16. G. J. Hu, Z. H. Sun, C. Shi, R. P. Fang, J. Chen, P. X. Hou, C. Liu, H. M. Cheng, and F. Li. A Sulfur-Rich Copolymer@CNT Hybrid Cathode with Dual-Confinement of Polysulfides for High-Performance Lithium–Sulfur Batteries. Adv. Mater., 2016, 1603835.
  17. Z. Weng, W. Liu, L. C. Yin, R. P. Fang, M. Li, E. I. Altman, Q. Fan, F. Li, H. M. Cheng and H. Wang. Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano lett., 2015, 15, 7704-7710.
  18. 18.  J. C. Li, S. Y. Zhao, P. X. Hou, R. P. Fang, C. Liu, J. Liang, J. Luan, X. Y. Shan and H. M. Cheng. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 19201-19206.
  19. N. Li, G. M. Zhou, R. P. Fang, F. Li and H. M. Cheng. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale, 2013, 5, 7780-7784.